References

Roth, R. S. (1956). “Pyrochlore-type compounds containing double oxides of trivalent and tetravalent ions.” Journal of Research of the National Bureau of Standards, 56, 17–25. https://doi.org/10.6028/jres.056.003
Merker, L.; and Herrington, K. D. (1964). “Transmission spectra of rare earth titanates and aluminates.” Applied Optics, 3, 1311–1313. https://doi.org/10.1364/AO.3.001311
Queyroux, F. (1966). “Sur l’existence d’un composé nouveau Yb6TiO11 et sur le diagramme d’équilibre Yb2O3-TiO2.” Bulletin de La Société Française de Minéralogie Et de Cristallographie, 88, 519–520. https://doi.org/10.3406/bulmi.1965.5882
Townsend, M. G.; and Crossley, W. A. (1968). “Magnetic susceptibility of rare-earth compounds with the pyrochlore structure.” Journal of Physics and Chemistry of Solids, 29, 593–598. https://doi.org/10.1016/0022-3697(68)90026-7
Blöte, H. W. J.; Wielinga, R. F.; and Huiskamp, W.J. (1969). “Heat-capacity measurements on rare-earth double oxides R2M2O7.” Physica, 43, 549–568. https://doi.org/10.1016/0031-8914(69)90187-6
McCaffrey, J. F.; McDevitt, N. T.; and Phillippi, C. M. (1971). “Infrared lattice spectra of rare-earth stannate and titanate pyrochlores.” Journal of the Optical Society of America, 61, 209–212. https://doi.org/10.1364/JOSA.61.000209
McCauley, R. A. (1973). “Infrared-absorption characteristics of the pyrochlore structure.” Journal of the Optical Society of America, 63, 721–725. https://doi.org/10.1364/JOSA.63.000721
Dunlap, B. D.; Shenoy, G. K.; Friedt, J. M.; Meyer, M.; and McCarthy, G. J. (1978a). “Crystal field properties of Yb2Ti2O7.” Journal of Applied Physics, 49, 1448–1449. https://doi.org/10.1063/1.324970
Dunlap, B. D.; Shenoy, G. K.; Friedt, J. M.; Meyer, M.; and McCarthy, G. J. (1978b). Crystal-field properties of Yb2Ti207 using 170Yb mossbauer spectroscopy.” Physical Review B, 18, 1936–1941.
Huang, Z.-K.; Lin, Z. X.; and Yen, T. S. (1979). Studies on the phase equilibrium relations and crystal chemistry of R2O3(r=la,nd,gd,ho,yb)-TiO2 systems. I. Phase equilibrium relations of R2O3(r=la,nd,gd,ho,yb)-TiO2 systems.” Guisuanyan Xuebao, 7, 1–10.
Scheetz, B. E.; and White, W. B. (1983). “Temperature-dependent raman spectra of rare-earth titanates with the pyrochlore structure: A dipolar order-disorder transition.” Optical Engineering, 22, 302–307. https://doi.org/10.1117/12.7973109
Sengupta, A.; Jana, J.; and Ghosh, D. (1999). “Crystal field studies on magnetic and nuclear properties of Yb2Ti2O7.” Journal of Physics and Chemistry of Solids, 60, 331–336. https://doi.org/10.1016/S0022-3697(98)00287-X
Bramwell, S. T.; Field, M. N.; Harris, M. J.; and Parkin, I. P. (2000). “Bulk magnetization of the heavy rare earth titanate pyrochlores - a series of model frustrated magnets.” Journal of Physics: Condensed Matter, 12, 483–495. https://doi.org/10.1088/0953-8984/12/4/308
Hodges, J. A.; Bonville, P.; Forget, A.; and André, G. (2001). “First-order transition in frustrated Yb2Ti2O7 without long-range order.” Journal of Physics: Condensed Matter, 79, 1373–1380. https://doi.org/10.1139/p01-113
Hodges, J. A.; Bonville, P.; Forget, A.; Rams, M.; Królas, K.; and Dhalenne, G. (2001). “The crystal field and exchange interactions in Yb2Ti2O7.” Journal of Physics: Condensed Matter, 13, 9301–9310. https://doi.org/10.1088/0953-8984/13/41/318
Hodges, J. A.; Bonville, P.; Forget, A.; Yaouanc, A.; Réotier, P. D. de; André, G.; Rams, M.; Królas, K.; Ritter, C.; Gubbens, P. C. M.; Kaiser, C. T.; King, P. J. C.; and C. Baines, and. (2002). “First-order transition in the spin dynamics of geometrically frustrated Yb2Ti2O7.” Physical Review Letters, 88, 077204. https://doi.org/10.1103/PhysRevLett.88.077204
Yasui, Y.; Soda, M.; Iikubo, S.; Ito, M.; Sato, M.; Hamaguchi, N.; Matsushita, T.; Wada, N.; Takeuchi, T.; Aso, N.; and Kakurai, K. (2003). “Ferromagnetic transition of pyrochlore compound Yb2Ti2O7.” Journal of the Physical Society of Japan, 72, 3014–3015. https://doi.org/10.1143/JPSJ.72.3014
Blundred, G. D.; Bridges, C. A.; and Rosseinsky, M. J. (2004). “New oxidation states and defect chemistry in the pyrochlore structure.” Angewandte Chemie International Edition, 43, 3562–3565. https://doi.org/10.1002/anie.200453819
Klimin, S. A.; Popova, M. N.; Chukalina, E. P.; Malkin, B. Z.; Zakirov, A. R.; Antic-Fidancev, E.; Goldner, Ph.; Aschehoug, P.; and Dhalenne, G. (2004). “Stark structure of the Yb3+ ion levels in (YbxY1 – x)2Ti2O7 and the crystal field in rare-earth titanates with a pyrochlore structure.” Proceedings of the XII Feofilov Workshop “Spectroscopy of Crystals Activated by Rare-Earth and Transition Metal Ions”, 95, 094407.
Shlyakhtina, A. V. and Shcherbakova, L. G. and Knotko, A. V. and Steblevski, A. V. (2004). “Study of the fluorite–pyrochlore–fluorite phase transitions in Ln2Ti2O7 (ln=lu, yb, tm).” Journal of Solid State Electrochemistry, 8, 661–667. https://doi.org/10.1007/s10008-003-0491-8
Shlyakhtina, A. V.; Karyagina, O. K.; and Shcherbakova, L. G. (2004). “Order–disorder transformations in Ln2Ti2O7 (ln = lu, yb, tm, gd).” Inorganic Materials, 40, 59–65. https://doi.org/10.1023/B:INMA.0000012180.80891.72
Lau, G. C.; Muegge, B. D.; McQueen, T. M.; Duncan, E. L.; and Cava, R. J. (2006). “Stuffed rare earth pyrochlore solid solutions.” Journal of Solid State Chemistry, 179, 3126–3135. https://doi.org/10.1016/j.jssc.2006.06.007
Horovistiz, A. L.; Abrantes, J. C. C.; Fagg, D. P.; and Frade, J. R. (2008). “Effects of yb:ti ratio on transport properties of Yb2±xTi2±xO7±δ.” Solid State Ionics, 179, 1046–1049. https://doi.org/10.1016/j.ssi.2008.02.026
Horovistiz, A. L.; Boguslavskii, M. V.; Abrantes, J. C. C.; Shlyakhtina, A. V.; Fagg, D. P.; Shcherbakova, L. G.; and Frade, J. R. (2009). “Effects of composition and frozen-in conditions on bulk and grain boundary conductivities of Yb2Ti2O7-based materials.” Solid State Ionics, 180, 774–777. https://doi.org/10.1016/j.ssi.2008.11.017
Ross, K. A.; Ruff, J. P. C.; Adams, C. P.; Gardner, J. S.; Dabkowska, H. A.; Qiu, Y.; Copley, J. R. D.; and B. D. Gaulin, and. (2009). “Two-dimensional kagome correlations and field induced order in the ferromagnetic XY pyrochlore Yb2Ti2O7.” Physical Review Letters, 103, 227202. https://doi.org/10.1103/PhysRevLett.103.227202
Ross, K. A.; Savary, L.; Gaulin, B. D.; and Balents, L. (2011). “Quantum excitations in quantum spin ice.” Physical Review X, 1, 021002. https://doi.org/10.1103/PhysRevX.1.021002
Thompson, J. D.; McClarty, P. A.; Rønnow, H. M.; Regnault, L. P.; Sorge, A.; and Gingras, M. J. P. (2011). “Rods of neutron scattering intensity in Yb2Ti2O7: Compelling evidence for significant anisotropic exchange in a magnetic pyrochlore oxide.” Physical Review Letters, 106, 187202. https://doi.org/10.1103/PhysRevLett.106.187202
Chang, L.-J.; Onoda, S.; Su, Y.; Kao, Y.-J.; Tsuei, K.-D.; Yasui, Y.; Kakurai, K.; and Lees, M. R. (2012). “Higgs transition from a magnetic coulomb liquid to a ferromagnet in Yb2Ti2O7.” Nature Communications, 3, 187202. https://doi.org/10.1038/ncomms1989
Ross, K. A. (2012). Neutron scattering studies of Yb2Ti2O7. http://hdl.handle.net/11375/12623
Ross, K. A.; Proffen, Th.; Dabkowska, H. A.; Quilliam, J. A.; Yaraskavitch, L. R.; Kycia, J. B.; and Gaulin, B. D. (2012). “Lightly stuffed pyrochlore structure of single-crystalline Yb2Ti2O7 grown by the optical floating zone technique.” Physical Review B, 86, 174424. https://doi.org/10.1103/PhysRevB.86.174424
“Single crystal growth of the pyrochlores R2Ti2O7 (r = rare earth) by the optical floating-zone method.” (2013). Journal of Crystal Growth, 377, 96–100. https://doi.org/10.1016/j.jcrysgro.2013.04.048
Baroudi, K.; Gaulin, B. D.; Lapidus, S. H.; Gaudet, J.; and Cava, R. J. (2015). “Symmetry and light stuffing of Ho2Ti2O7, Er2Ti2O7, and Yb2Ti2O7 characterized by synchrotron x-ray diffraction.” Physical Review B, 92, 024110. https://doi.org/10.1103/PhysRevB.92.024110
Dąbkowska, H. A.; and Dąbkowski, A. B. (2015). “Optical floating zone—complementary crystal growth technique for new classes of oxide materials.” In P. Rudolph (Ed.), Handbook of crystal growth (second edition) (Second Edition, pp. 281–329). Elsevier. https://doi.org/10.1016/B978-0-444-63303-3.00008-0
Jaubert, L. D. C.; Benton, O.; Rau, J. G.; Oitmaa, J.; Singh, R. R. P.; Shannon, N.; and Michel J. P. Gingras, and. (2015). “Are multiphase competition and order by disorder the keys to understanding Yb2Ti2O7?” Physical Review Letters, 115, 267208. https://doi.org/10.1103/PhysRevLett.115.267208
Robert, J.; Lhotel, E.; Remenyi, G.; Sahling, S.; Mirebeau, I.; Decorse, C.; Canals, B.; and S. Petit, and. (2015). “Spin dynamics in the presence of competing ferromagnetic and antiferromagnetic correlations in Yb2Ti2O7.” Physical Review B, 115, 064425. https://doi.org/10.1103/PhysRevB.92.064425
Thompson, J. (2016). Neutron scattering and thermodynamic studies of the magnetic material Yb2Ti2O7 at mK temperatures. http://doi.org/10.5287/ora-xk9k72wxj
Arpino, K. E.; Trump, B. A.; Scheie, A. O.; McQueen, T. M.; and Koohpayeh, S. M. (2017). “Impact of stoichiometry of Yb2Ti2O7 on its physical properties.” Physical Review B, 95, 094407. https://doi.org/10.1103/PhysRevB.95.094407
D’Ortenzio, R. M. (2018). Ground state of the quantum spin ice Yb2Ti2O7. http://hdl.handle.net/11375/13589
Shafieizadeh, Z. (2018). Direct observation of structural defects in pyrochlore Yb2Ti2O7 by atomic resolution scanning transmission electron microscopy. http://purl.flvc.org/fsu/fd/2018_Su_Shafieizadeh_fsu_0071E_14721
Scheie, A.; Kindervater, J.; Zhanga, S.; Changlani, H. J.; Sala, G.; Ehlers, G.; Heinemannh, A.; Tucker, G. S.; Koohpayeh, S. M.; and Collin Broholm, and. (2020). “Multiphase magnetism in Yb2Ti2O7.” Proceedings of the National Academy of Sciences, 117, 27245–27254. https://doi.org/10.1073/pnas.2008791117
Scheie, A.; Benton, O.; Taillefumier, M.; Jaubert, L. D. C.; Sala, G.; Jalarvo, N.; Koohpayeh, S. M.; and Shannon, N. (2022). “Dynamical scaling as a signature of multiple phase competition in Yb2Ti2O7.” Physical Review Letters, 129, 217202. https://doi.org/10.1103/PhysRevLett.129.217202